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Reconstructed CKM matrices
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Department of Physics, University of Southampton, Southampton SO17 4JU, UK

Received 21 November 1995

Abstract. We construct quark mixing matrices within a group theoretic framework which is
easily applicable to any number of generations. Familiar cases are retrieved and related, and it
is hoped that our viewpoint may have advantages both phenomenologically and for constructing
underlying mass matrix schemes.

At a recent meeting in Meribel one of the authors (KJB) was struck by a particular
presentation by Kayser [1, 2] and the reaction of many participants in the audience. The
topic was that of describing the Cabibbo–Kobayashi–Maskawa (CKM) matrix [3–7] in
terms of 4 phases of the unitarity triangles [8], and the connection with CP violation.
Although the audience might well be considered ‘expert’, there was a marked resistance
to consider seriously anything other than formulations (presumably many and varied) with
which participants were already working, and the questions and comments revealed clear
misunderstandings of other schemes and parametrizations. This brief note is an attempt
to encourage a wider appreciation of the parametrizations of the CKM matrix and the
connections between them in a very simple manner. It is directly applicable to larger
numbers of generations of quarks should this turn out to be forced by physics in the future.

In the standard model withn generations the CKM matrix appears as ann× n unitary
matrix, (Vn)βα , mixing then left-handed lower weak isospin quarks,Dβ , to reflect the change
of basis of the quarks from current eigenstates to mass eigenstates. The charged current
then couples these to the adjoint of then left-handed higher weak isospin mass eigenstates
U
α
. This notation is chosen to emphasize the group theoreticU(n) nature of the structure,

although no physical symmetry need be ascribed to this group. In particular, it should be
noted that this group should not be confused either with the weakSU(2) × U(1) group,
nor with the earlier hadronic organisingSU(3) group of Gell-Mann or its extensions to
SU(4), etc. Nevertheless, from the point of view of parametrizing the CKM matrix the
Gell-Mann [9] notation will prove to be very convenient. Thus theDα are assigned to then
dimensional fundamental representation, as indeed are theUα so thatŪα are in the conjugate
multiplet. Thus(Vn)βα may be expanded in any general unitary form (such as exponential)
in terms of the adjoint multiplet represented by the(n2 − 1) Gell-Mann(n× n) Hermitian
λ matrices and the unit. This makes clear thatVn containsn2 real parameters, but since the

relative phases of the elements ofDα andU
β

can be independently picked(2n− 1) of the
parameters can be removed (the overall phase is irrelevant) and(n − 1)2 independent real
parameters suffice. We shall see later in particular cases how these give rise in general to
both real and complex elements ofV , and are frequently interpreted as ‘mixing angles’ and
‘complex phases’. These latter give rise to the possibility ofCP violation if n > 2. In other

0305-4470/96/164957+09$19.50c© 1996 IOP Publishing Ltd 4957



4958 K J Barnes et al

interpretations the parameters are viewed as ‘phases’ of unitarity triangles. The physics is,
of course, independent of these interpretations although they may be useful for visualization
of the phenomenology, or lead to intuitions as to the underlying mass mechanisms, and
should not be undervalued.

We will now show how theλ matrix framework is directly relevant to implementing
the phase freedoms mentioned above, and actually constructing useful parametrizations of
Vn. It is convenient to recall that the Gell-Mann representation of theλ matrices can be
built up inductively asn increases. Since the rank ofSU(n) is (n − 1), there are(n − 1)
diagonal traceless matrices designatedλk(k+2), with k = 1 ton−1, whereλk(k+1) has entries√

2/k(k − 1) down the first(k − 1) diagonal places,(−)√2(k − 1)/k in the next diagonal
place, and zeros in all other places, so that the trace of its square is two.

The off diagonal matrices follow the pattern of the Pauli matrices both in terms of
ordering sequence and entries. Thusλ1 has a 1 in thefirst row and second column, andλ2

has a−i in the same place, all other entries being zero except for the complex conjugate
entries to the forementioned in the transposed matrix position to ensure hermiticity. The
traceless property is obvious, as is the continuation of the normalization that the trace of
each square is two. Clearly the number of off diagonal matrices thus constructed to be
listed asλi , with (k − 1)2 6 i 6 k2 − 2, is 2(k − 1), since the entries 1 and−i are placed
sequentially in the rows of thekth column starting in the first row and going down to the
row (k − 1) as k increases through the range specified. It follows that the number of off
diagonal matrices in all isn(n− 1), and these together with the(n− 1) diagonal matrices
yield the full basis ofn2 − 1 traceless Hermitian matrices.

We are now in a position to make a preliminary discussion of what is meant by a
parametrization ofVn, at this stage not considering the removal of phases and so dealing
with n2 real parameters. Obviously, since we have a basis ofn2 Hermitian matrices,
comprising theλi and the unit, a familiar unitary parametrization is available in the form

Vn = exp

[−i

2
(θiλ

i + χ1)

]
(1)

where then2 parameters,θi andχ , are all real. Of course, many other unitary constructions
are possible, and these include products of several factors each of which are unitary (usually
exponential). Two conditions must be observed. The parameters are essential in the technical
sense, so that there must ben2 of them. If the expansion of a given parametrization for
small parameters coincides with the expansion of equation (1), then these may be viewed
as equivalent. (We ignore parametrizations at large values of the angles.) But this is
not the only possibility. It is also acceptable if the expansion involves only a subset of
the matrices, but these yield the full set of matrices under repeated commutation. This
will include important known cases of parametrization as will be demonstrated shortly in
particular examples, but the idea may already be familiar to the reader through the Euler
angle specification of rotations in three dimensions. There the three rotations are not about
three independent orthogonal axes, but two are about a single axis with the third separating
these two being about a second axis. The expansion for small angles only contains two
independent infinitesimal generators (although three parameters are used) but these commute
to produce the third infinitesimal generator as theA1 algebra of theSO(3) group closes.

We now turn to the main tasks of removing the phases in such a manner that the
resulting final form ofVn is perspicuously exhibited. The precise initial specification ofVn
is intimately related to the way in which the phases are treated in our prescription. Two
technical points arise, and as only the first is needed in the simplestn = 2 case, we again
turn to treating the problem iteratively.
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In the n = 2 case there are phase freedoms

D =
(
d

s

)
→ exp(−iξT3)D (2)

and

U = (uc) → U exp(iωT3) exp

(
i

2
χ1

)
(3)

where we have reverted to the usual Pauli matrix notationτ i(i = 1, 2, 3) for theλi , Ti = τi/2
and ξ, ω andχ are real. Notice that, as the overall phase is physically irrelevant, there is
no χ term in equation (2) corresponding to the one in equation (3). Indeed the overall
phase is always trivial to treat, and we have here denoted it byχ to emphasize that it will
immediately eliminate the corresponding phase in equation (1). It should now be clear that
equation (1) is not the most convenient starting specification forV2. Clearly a product form

V2 = exp

(−i

2
χ1

)
exp(−iρT3) exp(−iθATA) (4)

whereA = 1, 2, gives an immediate improvement, exposing the diagonal matrices on the left
of the structure. But this can be further exposed by considering the form of the right-hand
term,K2 say. Observe thatθA can be regarded as the components of a two-dimensional
vector rotated by theU1 factor generated byT3 in our SU2. Thus, the form ofK2 can be
re-expressed as

K2(ε, θ, T ) = exp(−iεT3) exp(2iθT2) exp(iεT3) (5)

where the parametersε andθ replace the originalθA. (The connection between the two sets
of parameters is trivial to establish, but is not required here.) Substituting this form back
into equation (4) reveals

V2 = exp

(−iχ

2

)
exp(−i[ε + ρ]T3) exp(2iθT2) exp(iεT3) (6)

and comparison with equations (2) and (3) shows that the phase changes specified byχ ,
ω = ρ, andξ = ε, produce

V2 = exp(2iθT2) (7)

as our final one parameter description ofV2. The concrete matrix form ofV2 is now

V2 =
[

cosθ sinθ
− sinθ cosθ

]
(8)

revealing thatθ is the well known Cabibbo [4] angle.
Now we turn to then = 3 case which is currently of most physical interest. To make

optimal use of the analysis used so conveniently in then = 2 case above, we propose to
exploit theSU(2)× U(1) subgroup structure ofSU(3) so extensively developed some 30
years ago by Lipkinet al [10], and the version we present differs from the presentation of
Carruthers [11] only by trivial signs specifically introduced for our present interests. With
the notation introduced earlier, theSU2 generators are

Ti = λi/2 (9)

exactly as before but extended by a third row and column of zeros, and we introduce

T = 1

2
√

3
λ8 (10)
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as the generator of theU1 which commutes to zero with each of theTi . It must be
emphasized, of course, that the generalization ofD is now to a three component column
with descending entriesd, s andb. Similarly the generalization ofU is to (uct). We then
introduce another set ofSU2 generators by

U1 = λ6

2
U2 = λ7

2
U3 =

√
3

4
λ8 − 1

4
λ3 (11)

and an associatedU1 generator by

U = −1

4
√

3
λ8 − 1

4
λ3 (12)

by copying the structure ofTi andT which distinguished the third row and column but now
distinguishing the first row and column. Yet again we define generators of a thirdSU2 by

V1 = λ4

2
V2 = −λ5

2
V3 = −

√
3

4
λ8 − 1

4
λ3 (13)

and an associatedU1 generator by

V = −1

4
√

3
λ8 + 1

4
λ3 (14)

by distinguishing this time the second row and column, and judiciously inserting minus
signs intoV2 andV3 for our notational convenience. (We hope that in context there will
be no confusion between these components ofV and the unitary matrix.) It will be noted
that the first two components ofT , U , andV give a basis for the six off-diagonal matrices.
However, thatT3, U3, V3 together withT ,U, V and the unit matrix, must really be dependent
on only three independent matrices in the diagonal sector. We shall see, nevertheless, that
this notion is most suited to our purposes. Therefore we retain this overspecification and
record the relationships reflecting the degeneracy for future use. The notation has been
designed for maximum symmetry between the three spins, and in particular

T3 + U3 + V3 = 0 (15)

and

T + U + V = 0 (16)

with our choice of sign conventions. The remainder of the relationships can be conveniently,
but still redundantly, specified in the form

T3 = T + 2V (17)

U3 = U + 2T (18)

V3 = V + 2U (19)

which neatly exposes the cyclical nature of the notation. In practice, as we shall shortly see,
the most immediately useful relationships are those expressing the third member of anSU2

set of generators in terms of two of the singlet operators as in equations (17)–(19) above,
or their variants utilizing equation (16) such as

V3 = −V − 2T (20)

and

2U = −T − T3 (21)

or again their variants using equation (17) such as

U3 = 3U − 2V3 (22)
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and

2U3 = 3T − T3. (23)

We are now ready to work through the details of then = 3 case. There are phase
freedoms

D → exp(−iξT3) exp(−iγ T )D (24)

U → U exp(iωT3) exp

(
iχ

2
1

)
exp(iKT ) (25)

and we can take

V3 = exp

(−iχ

2

)
exp(−iρT3) exp(−iµT )K(ε, θ, T )K(δ, ψ, V )K(λ, φ, u) (26)

where the matricesK are now(3 × 3) in an obvious extension of the previous notation.
Notice that this extension can conveniently be viewed in the form

V3 = V2 exp(−iµT )K(δ, ψ, V )K(λ, φ,U) (27)

whereV2 has been extended by an extra column and row of zeros, and that the exponential
term involvingT can then be taken to the left through any part ofV2 sinceT commutes
with all the matrices inV2. This time things are a little more complicated, and before we
can adjust phases it is necessary to consider the structure implied whenever twoK matrices
are contiguous. In expanded form we see that

K(ε, θ, T )K(δ, ψ, V )

= exp(−iεT3) exp(2iθT2) exp(iεT3) exp(−iδV3) exp(2iψV2) exp(iδV3) (28)

when it becomes evident that there is a ‘phase matrix’ of exp(iεT3) exp(−iδV3) appearing
between the two ‘rotations’ exp(2iθT2) and exp(2iψV2). However, it is clear from
equation (17) and from equation (20) that this ‘phase matrix’ can be expressed as
exp(i[ε+2δ]T ) exp(i[δ+2ε]V ), so it can be seen that the left hand factor may be commuted
to the left-hand end ofV3, and that the right-hand factor can be commuted one step to the
right of theK(δ,ψ, V ) factor in equation (28). The next step is to examine the structure
of V3 farther to the right of the ‘rotation matrix’ part ofK(δ,ψ, V ) in equation (26).

Noting the extra phase we have just moved to the right this part ofV now becomes

exp(i[δ + 2ε]V ) exp(iδV3)K(λ, φ,U)

= exp(i[δ + 2ε]V ) exp(iδV3) exp(−iλU3) exp(2iφU2) exp(iλU3). (29)

This time it is clear that at least some part of the ‘phase matrix’ before theφ ‘rotation matrix’
cannot be moved farther to the right. However, we can choose to use equations (19) and
(22) to write the first line of equation (29) as

exp(2i[δ + ε + λ]V3) exp(−iU [4ε + 2δ + 3λ])

revealing that it is possible to move the right-hand factor to the right through theφ ‘rotation
matrix’ and leaving the residual ‘phase matrix’ in terms ofV3 alone. The final step is then
to express the (now) three phases to the right of equation (26) in terms ofT3 andT . This
is easily seen to have the form

exp(iT [δ + 2ε + 3λ]) exp(iT3[δ + 2ε + λ])

by using equations (21) and (23).
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We can now adjust the phases in equations (22) and (23), so that taking

ξ = δ + 2ε + λ (30)

γ = δ + 2ε + 3λ (31)

ω = ε + ρ (32)

K = µ− ε − 2δ (33)

and calling

δ + ε + λ = 1 (34)

the form

V3 = exp(2iθT2) exp(2iψV2) exp(2i1V3) exp(2iφU2) (35)

emerges as the final four parameter form of the mixing matrix for then = 3 case.
As this is currently thought to be the most important physical case, we pause here

to retrieve some well known parametrizations before moving on to higher numbers of
generations of quarks.

The first thing to realize is that the particular grouping of rotations and phases which
we have presented, although very convenient for counting parameters and demonstrating
the principles, is by no means unique. Indeed the very obvious construction

V3 = exp(2iθ23U2)K(−δ13,−θ13, V )exp(2iθ12T2) (36)

where the phase remains on both sides of the 1–3 rotation matrix inK, is precisely the
recommended ‘standard form’ given in reference [5] and credited primarily to Chau and
Keung [6]. Expanding into matrix form we see that this is

V3 =
[

c12c13 s12c13 s13 exp(−iδ13)

−s12c23 − c12s23s13 exp(iδ13) c12c23 − s12s23s13 exp(iδ13) s23c13

s12s23 − c12c23s13 exp(iδ13) −c12s23 − s12c23s13 exp(iδ13) c23c13)

]
(37)

wherec12 ands23 denote respectively cosθ12 and sinθ23 etc, as in equation (3) of reference
[5]. The axis of rotation is indicated by the missing index.

On the other hand, the originalKM matrix [3] is of ‘Euler angle’ type, involving
‘rotations’ about only two axes. This time we may write this as

V3 = exp(−2iθ2U2) exp(−2iθ1T2) exp

(
i[δ + π ]

3

)
exp(−2i[δ + π ]T ) exp(2iθ3U2) (38)

where the existence of an overall phase (involvingπ which has the familiar mathematical
value and should not be confused with the four parameters) is needed in our notation to
recover equation (4) of reference [5]. This can be expanded as

V3 =
[
c1 −s1c3 −s1s3
s1c2 c1c2c3 − s2s3 exp(iδ) c1c2s3 + s2c3 exp(iδ)
s1s2 c1s2c3 + c2s3 exp(iδ) c1s2s3 − c2c3 exp(iδ)

]
(39)

where this timec1 denotes cosθ1 etc., and the index on the angles shows the axis of rotation
directly.

It is now clear from the last example that the complex entries in the CKM matrix can
be contained in four positions. This raises the amusing possibility of a description in which
the mixing form current to mass eigenstates exactly contrives to put complex entries only
in the final row and column thus ‘interpreting’ theCP violation in the kaon system purely
in terms of intermediate top and bottom exchange contributions. One way to achieve this
is to take

V3 = exp(2iθT2)K(− 1
2δ,−φ, V )exp(2iψT2) (40)
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so that the expanded form

V3 =


[cosθ cosφ cosψ

− sinθ sinψ ]
[cosθ cosφ sinψ

+ sinθ cosψ ]
cosθ sinφ exp(iδ)

[− sinθ cosφ cosψ
− cosθ sinψ ]

[cosθ cosψ
− sinθ cosφ sinψ ]

− sinθ sinφ exp(iδ)

− cosψ sinφ exp(−iδ) − sinφ sinψ exp(−iδ) cosφ

 (41)

shows this feature directly.
Finally, we turn to the description of the CKM matrix in terms of phases of the unitarity

triangles [8]. Curiously, the key step [1, 2] in making the connection is to parametrize the
CKM matrix so that all the complex terms are in the top left-hand corner. We take the form

V3 = exp(−2iθT2) exp(−2iψV2) exp( 1
3iπ [1 − 6U ]) exp( 1

3iε[1 − 6V ]) exp(2iφT2) (42)

which expanded out reads

V3 =


[− cosθ cosψ cosφ
+ sinθ sinφ exp(iδ)]

−[cosθ cosψ sinφ
+ sinθ cosφ exp(iδ)]

cosθ sinψ

[− sinθ cosψ cosφ
− cosθ sinφ exp(iδ)]

[− sinθ cosψ sinφ
+ cosθ cosφ exp(iδ)]

sinθ sinψ

sinψ cosφ sinψ sinφ cosψ

 . (43)

To display the connections to the Kayser [1, 2] form more clearly we defineλ by

cosψ = λ cosδ (44)

andrij , for i = u, c andj = d, s, by

rij tanδ = tan(argVij ) (45)

where (as we shall soon see directly) the fourrij are related by a single constraint. From
the top left hand four entries ofV3 we now see directly that

rud = tanθ tanφ

tanθ tanφ − λ
(46)

rcd = tanφ

tanφ + λ tanθ
(47)

rus = tanθ

tanθ + λ tanφ
(48)

and

rcs = 1

1 − λ tanθ tanφ
. (49)

Eliminating λ, φ andθ from these equations reveals

(1 − rcd)(1 − rus)

rcdrus
= (1 − rud)(1 − rcs)

rudrcs
(50)

as the constraint equation expected. Then we find

λ2 = (1 − rud)(1 − rcs)

rudrcs
(51)

with alternative expressions yielded by the use of the constraint equation. Reintroducingδ

by equation (44) relates tanδ to a complicated quotient of sums of products of the tangents
of the angles of the unitarity triangles. We do not quote this directly, as we find no simple
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expression, although the algebra is direct and straightforward. Finally, we can substitute
equations (50) and (51) back into pairs of equations (46) to (49) to reveal

tan2 θ = (1 − rcs)rus

rcs(1 − rus)
(52)

and

tan2 φ = (1 − rus)rud

rus(1 − rud)
(53)

where alternative expressions are available by using the constraint equation (50) yet again.
Now that λ and δ are known (at least implicitly), equation (44) givesψ to complete the
connection between our parametrization and the unitary triangle angles of Kayser [1, 2]. We
find the algebraic complexity disappointing, but the connections are at least clearly made.

We finally treat all cases with four or more generations. Consider expanding fromn to
n+1 wheren > 3. The first two new matrices introduced will beλ matrices whose indices
aren2 andn2+1, and which have entries 1 and−i respectively in the top right-hand corner,
with their conjugates appearing in the bottom left-hand corner. To enable easy visualization
we denote these as 261 and 262, where then-dependence has been suppressed. Clearly61

and62 are a part of anSU(2) set of generators, the third member of which we call63 with
entries1

2 and− 1
2 in the top left-hand corner and the bottom right-hand corner respectively.

Again, consider the new diagonal matrix introduced by the expansion fromn to n + 1. It
is, of course,λn(n+2). This has entries [2/n(n+ 1)]1/2 down the firstn diagonal places, and
(−)[2n/n+ 1]1/2 in the final diagonal place.

Obviously λn(n+2) commutes with the whole set ofU(n) matrices parameterizingVn,
and we now write (in an obvious extension of equation (27))

Vn+1 = Vn exp

(−iνλn(n+2)

2
√

3

)
K(η, ζ,6) . . . (54)

where there are nown new K factors implied, of which we have shown only the first
explicitly. As previously, the exponential factor can be moved to the left as required. Now
the first newK factor can be expanded as before in the form

K(η, ζ,6) = exp(−iη63) exp(2iζ62) exp(iη63) (55)

and the now familiar task is to remove the first exponential factor by expressing it in terms
of diagonal matrices which either commute with everything to the left or through at least
one term to the right. Our method is a straightforward extension of that used in then = 3
case. We introduce a diagonal matrixCn+1 which has entries12[(n− 1)/3(n+ 1)]1/2 in the
top left-hand corner and the bottom right-hand corner, and entries(−)[1/3(n−1)(n+1)]1/2

in the remaining(n− 1) diagonal places. This has been designed to be traceless, and to be
normalized so that the trace of its square is the same as the corresponding matrices in the
3 × 3 case. It is trivial to see that

63 =
[

n

2(n+ 1)

]1/2

λn(n+2) +
[

3(n− 1)

(n+ 1)

]1/2

Cn+1. (56)

Obviously λn(n+2) commutes with the entire structure to the left ofK(η, ζ,6) in
equation (54), and alsoC commutes with the6 which appear to its right in equation (55).
This latter point is, of course, by construction in analogy with the 3×3 case, but is perhaps
intuitively even easier to see now that the matrices are more sparse.

A last word should probably be said concerning the counting of parameters in the
general case as displayed by the present analysis. As we constructVn+1, working from
the left in equation (54) we first encounterVn with (n − 1)2 independent real parameters
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conveniently viewed as12n(n − 1) angles and1
2(n − 1)(n − 2) phases. Next we findn

factors ofK, each having the structure shown in equation (55), namely that of a rotation
surrounded by exponential phase factors. Finally, there is a phase factor carried on the
new diagonal matrix introduced at this level. What we have shown however is that the
phase to the left of the first newK factor may be removed by expressing it in terms of a
part which commutes to the left to be absorbed on phases ofU , and part which commutes
one step to the right. Finally the phase to the extreme right of the newK factors may
be absorbed into the phases ofD. Thus, overall, there aren new rotation parameters, and
(n − 1) new phases. The number of angles then becomes1

2n(n − 1) + n = 1
2n(n + 1),

and the number of phases12(n − 1)(n − 2) + (n − 1) = 1
2n(n − 1) as previously stated.

Perhaps it should be emphasized that, just as in then = 3 case, there are many possible
variants of representation ofVn and arising in much the same way. We do not expand on
this theme, however, since currently the physical interest is in then = 3 case and there is
no evidence of further generations of quarks and leptons. One of the authors (KJB) still
retains a hope that a further generation will be found and that the economy of orthogonal
organizing symmetries [12] will be utilized by nature. In that event, the analysis presented
here would be immediately utility in describing possible mass breaking schemes.
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